Simulation for Data Science with R PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Simulation for Data Science with R PDF full book. Access full book title Simulation for Data Science with R by Matthias Templ. Download full books in PDF and EPUB format.

Simulation for Data Science with R

Simulation for Data Science with R PDF Author: Matthias Templ
Publisher: Packt Publishing Ltd
ISBN: 1785885871
Category : Computers
Languages : en
Pages : 398

Book Description
Harness actionable insights from your data with computational statistics and simulations using R About This Book Learn five different simulation techniques (Monte Carlo, Discrete Event Simulation, System Dynamics, Agent-Based Modeling, and Resampling) in-depth using real-world case studies A unique book that teaches you the essential and fundamental concepts in statistical modeling and simulation Who This Book Is For This book is for users who are familiar with computational methods. If you want to learn about the advanced features of R, including the computer-intense Monte-Carlo methods as well as computational tools for statistical simulation, then this book is for you. Good knowledge of R programming is assumed/required. What You Will Learn The book aims to explore advanced R features to simulate data to extract insights from your data. Get to know the advanced features of R including high-performance computing and advanced data manipulation See random number simulation used to simulate distributions, data sets, and populations Simulate close-to-reality populations as the basis for agent-based micro-, model- and design-based simulations Applications to design statistical solutions with R for solving scientific and real world problems Comprehensive coverage of several R statistical packages like boot, simPop, VIM, data.table, dplyr, parallel, StatDA, simecol, simecolModels, deSolve and many more. In Detail Data Science with R aims to teach you how to begin performing data science tasks by taking advantage of Rs powerful ecosystem of packages. R being the most widely used programming language when used with data science can be a powerful combination to solve complexities involved with varied data sets in the real world. The book will provide a computational and methodological framework for statistical simulation to the users. Through this book, you will get in grips with the software environment R. After getting to know the background of popular methods in the area of computational statistics, you will see some applications in R to better understand the methods as well as gaining experience of working with real-world data and real-world problems. This book helps uncover the large-scale patterns in complex systems where interdependencies and variation are critical. An effective simulation is driven by data generating processes that accurately reflect real physical populations. You will learn how to plan and structure a simulation project to aid in the decision-making process as well as the presentation of results. By the end of this book, you reader will get in touch with the software environment R. After getting background on popular methods in the area, you will see applications in R to better understand the methods as well as to gain experience when working on real-world data and real-world problems. Style and approach This book takes a practical, hands-on approach to explain the statistical computing methods, gives advice on the usage of these methods, and provides computational tools to help you solve common problems in statistical simulation and computer-intense methods.

Simulation for Data Science with R

Simulation for Data Science with R PDF Author: Matthias Templ
Publisher: Packt Publishing Ltd
ISBN: 1785885871
Category : Computers
Languages : en
Pages : 398
Book Description
Harness actionable insights from your data with computational statistics and simulations using R About This Book Learn five different simulation techniques (Monte Carlo, Discrete Event Simulation, System Dynamics, Agent-Based Modeling, and Resampling) in-depth using real-world case studies A unique book that teaches you the essential and fundamental concepts in statistical modeling and simulation Who This Book Is For This book is for users who are familiar with computational methods. If you want to learn about the advanced features of R, including the computer-intense Monte-Carlo methods as well as computational tools for statistical simulation, then this book is for you. Good knowledge of R programming is assumed/required. What You Will Learn The book aims to explore advanced R features to simulate data to extract insights from your data. Get to know the advanced features of R including high-performance computing and advanced data manipulation See random number simulation used to simulate distributions, data sets, and populations Simulate close-to-reality populations as the basis for agent-based micro-, model- and design-based simulations Applications to design statistical solutions with R for solving scientific and real world problems Comprehensive coverage of several R statistical packages like boot, simPop, VIM, data.table, dplyr, parallel, StatDA, simecol, simecolModels, deSolve and many more. In Detail Data Science with R aims to teach you how to begin performing data science tasks by taking advantage of Rs powerful ecosystem of packages. R being the most widely used programming language when used with data science can be a powerful combination to solve complexities involved with varied data sets in the real world. The book will provide a computational and methodological framework for statistical simulation to the users. Through this book, you will get in grips with the software environment R. After getting to know the background of popular methods in the area of computational statistics, you will see some applications in R to better understand the methods as well as gaining experience of working with real-world data and real-world problems. This book helps uncover the large-scale patterns in complex systems where interdependencies and variation are critical. An effective simulation is driven by data generating processes that accurately reflect real physical populations. You will learn how to plan and structure a simulation project to aid in the decision-making process as well as the presentation of results. By the end of this book, you reader will get in touch with the software environment R. After getting background on popular methods in the area, you will see applications in R to better understand the methods as well as to gain experience when working on real-world data and real-world problems. Style and approach This book takes a practical, hands-on approach to explain the statistical computing methods, gives advice on the usage of these methods, and provides computational tools to help you solve common problems in statistical simulation and computer-intense methods.

Simulation for Data Science with R

Simulation for Data Science with R PDF Author: Matthias Templ
Publisher: Packt Publishing
ISBN: 9781785881169
Category : Computers
Languages : en
Pages : 398
Book Description


Principles of Data Science

Principles of Data Science PDF Author: Hamid R. Arabnia
Publisher: Springer Nature
ISBN: 303043981X
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
This book provides readers with a thorough understanding of various research areas within the field of data science. The book introduces readers to various techniques for data acquisition, extraction, and cleaning, data summarizing and modeling, data analysis and communication techniques, data science tools, deep learning, and various data science applications. Researchers can extract and conclude various future ideas and topics that could result in potential publications or thesis. Furthermore, this book contributes to Data Scientists’ preparation and to enhancing their knowledge of the field. The book provides a rich collection of manuscripts in highly regarded data science topics, edited by professors with long experience in the field of data science. Introduces various techniques, methods, and algorithms adopted by Data Science experts Provides a detailed explanation of data science perceptions, reinforced by practical examples Presents a road map of future trends suitable for innovative data science research and practice

Modeling Techniques in Predictive Analytics with Python and R

Modeling Techniques in Predictive Analytics with Python and R PDF Author: Thomas W. Miller
Publisher: FT Press
ISBN: 013389214X
Category : Computers
Languages : en
Pages : 448
Book Description
Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more

Marketing Data Science

Marketing Data Science PDF Author: Thomas W. Miller
Publisher: FT Press
ISBN: 0133887340
Category : Business & Economics
Languages : en
Pages : 225
Book Description
Now , a leader of Northwestern University's prestigious analytics program presents a fully-integrated treatment of both the business and academic elements of marketing applications in predictive analytics. Writing for both managers and students, Thomas W. Miller explains essential concepts, principles, and theory in the context of real-world applications. Building on Miller's pioneering program, Marketing Data Science thoroughly addresses segmentation, target marketing, brand and product positioning, new product development, choice modeling, recommender systems, pricing research, retail site selection, demand estimation, sales forecasting, customer retention, and lifetime value analysis. Starting where Miller's widely-praised Modeling Techniques in Predictive Analytics left off, he integrates crucial information and insights that were previously segregated in texts on web analytics, network science, information technology, and programming. Coverage includes: The role of analytics in delivering effective messages on the web Understanding the web by understanding its hidden structures Being recognized on the web – and watching your own competitors Visualizing networks and understanding communities within them Measuring sentiment and making recommendations Leveraging key data science methods: databases/data preparation, classical/Bayesian statistics, regression/classification, machine learning, and text analytics Six complete case studies address exceptionally relevant issues such as: separating legitimate email from spam; identifying legally-relevant information for lawsuit discovery; gleaning insights from anonymous web surfing data, and more. This text's extensive set of web and network problems draw on rich public-domain data sources; many are accompanied by solutions in Python and/or R. Marketing Data Science will be an invaluable resource for all students, faculty, and professional marketers who want to use business analytics to improve marketing performance.

Data Science and Simulation in Transportation Research

Data Science and Simulation in Transportation Research PDF Author: Janssens, Davy
Publisher: IGI Global
ISBN: 1466649216
Category : Computers
Languages : en
Pages : 350
Book Description
Given its effective techniques and theories from various sources and fields, data science is playing a vital role in transportation research and the consequences of the inevitable switch to electronic vehicles. This fundamental insight provides a step towards the solution of this important challenge. Data Science and Simulation in Transportation Research highlights entirely new and detailed spatial-temporal micro-simulation methodologies for human mobility and the emerging dynamics of our society. Bringing together novel ideas grounded in big data from various data mining and transportation science sources, this book is an essential tool for professionals, students, and researchers in the fields of transportation research and data mining.

Advances and Innovations in Statistics and Data Science

Advances and Innovations in Statistics and Data Science PDF Author: Wenqing He
Publisher: Springer Nature
ISBN: 3031083296
Category : Science
Languages : en
Pages : 338
Book Description
This book highlights selected papers from the 4th ICSA-Canada Chapter Symposium, as well as invited articles from established researchers in the areas of statistics and data science. It covers a variety of topics, including methodology development in data science, such as methodology in the analysis of high dimensional data, feature screening in ultra-high dimensional data and natural language ranking; statistical analysis challenges in sampling, multivariate survival models and contaminated data, as well as applications of statistical methods. With this book, readers can make use of frontier research methods to tackle their problems in research, education, training and consultation.

Handbook of Research on Data Science for Effective Healthcare Practice and Administration

Handbook of Research on Data Science for Effective Healthcare Practice and Administration PDF Author: Noughabi, Elham Akhond Zadeh
Publisher: IGI Global
ISBN: 1522525165
Category : Computers
Languages : en
Pages : 545
Book Description
Data science has always been an effective way of extracting knowledge and insights from information in various forms. One industry that can utilize the benefits from the advances in data science is the healthcare field. The Handbook of Research on Data Science for Effective Healthcare Practice and Administration is a critical reference source that overviews the state of data analysis as it relates to current practices in the health sciences field. Covering innovative topics such as linear programming, simulation modeling, network theory, and predictive analytics, this publication is recommended for all healthcare professionals, graduate students, engineers, and researchers that are seeking to expand their knowledge of efficient techniques for information analysis in the healthcare professions.

Modern Data Science with R

Modern Data Science with R PDF Author: Benjamin S. Baumer
Publisher: CRC Press
ISBN: 0429575394
Category : Business & Economics
Languages : en
Pages : 830
Book Description
From a review of the first edition: "Modern Data Science with R... is rich with examples and is guided by a strong narrative voice. What’s more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics" (The American Statistician). Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world data problems. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling questions. The second edition is updated to reflect the growing influence of the tidyverse set of packages. All code in the book has been revised and styled to be more readable and easier to understand. New functionality from packages like sf, purrr, tidymodels, and tidytext is now integrated into the text. All chapters have been revised, and several have been split, re-organized, or re-imagined to meet the shifting landscape of best practice.

Modelling and Simulation in Science

Modelling and Simulation in Science PDF Author: Vito Di Ges—
Publisher: World Scientific
ISBN: 9812779450
Category : Science
Languages : en
Pages : 350
Book Description
This proceedings volume contains results presented at the Sixth International Workshop on Data Analysis in Astronomy OCo OC Modeling and Simulation in ScienceOCO held on April 15-22, 2007, at the Ettore Majorana Foundation and Center for Scientific Culture, Erice, Italy. Recent progress and new trends in the field of simulation and modeling in three branches of science OCo astrophysics, biology, and climatology OCo are described in papers presented by outstanding scientists. The impact of new technologies on the design of novel data analysis systems and the interrelation among different fields are foremost in scientists'' minds in the modern era. This book therefore focuses primarily on data analysis methodologies and techniques. Sample Chapter(s). Chapter 1: Simulations for Uhe Cosmic Ray Experiments (562 KB). Contents: Astrophysics, Cosmology and Earth Physics: Simulations for UHE Cosmic Ray Experiments (J Knapp); Problems and Solutions in Climate Modeling (A Sutera); Statistical Analysis of Quasar Data and Validity of the Hubble Law (S Roy et al.); Quantum Astronomy and Information (C Barbieri); Biology, Biochemistry and Bioinformatics: From Genomes to Protein Models and Back (A Tramontano et al.); Exploring Biomolecular Recognition by Modeling and Simulation (R Wade); BioInfogrid: Bioinformatics Simulation and Modeling Based on Grid (L Milanesi); Methods and Techniques: Optimization Strategies for Modeling and Simulation (J Louchet); Biclustering Bioinformatics Data Sets: A Possibilistic Approach (F Masulli); From the Qubit to the Quantum Search Algorithms (G Cariolaro & T Occhipinti); Comparison of Stereo Vision Techniques for Cloud-Top Height Retrieval (A Anzalone et al.); and other papers. Readership: Physicists; biologists; computer scientists and data analysts."