Probability, Statistics and Simulation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Probability, Statistics and Simulation PDF full book. Access full book title Probability, Statistics and Simulation by Alberto Rotondi. Download full books in PDF and EPUB format.

Probability, Statistics and Simulation

Probability, Statistics and Simulation PDF Author: Alberto Rotondi
Publisher: Springer Nature
ISBN: 3031094298
Category : Mathematics
Languages : en
Pages : 643

Book Description
This book presents in a compact form the program carried out in introductory statistics courses and discusses some essential topics for research activity, such as Monte Carlo simulation techniques, methods of statistical inference, best fit and analysis of laboratory data. All themes are developed starting from fundamentals, highlighting their applicative aspects, up to the detailed description of several cases particularly relevant for technical and scientific research. The text is dedicated to university students in scientific fields and to all researchers who have to solve practical problems by applying data analysis and simulation procedures. The R software is adopted throughout the book, with a rich library of original programs accessible to the readers through a website.

Probability, Statistics and Simulation

Probability, Statistics and Simulation PDF Author: Alberto Rotondi
Publisher: Springer Nature
ISBN: 3031094298
Category : Mathematics
Languages : en
Pages : 643
Book Description
This book presents in a compact form the program carried out in introductory statistics courses and discusses some essential topics for research activity, such as Monte Carlo simulation techniques, methods of statistical inference, best fit and analysis of laboratory data. All themes are developed starting from fundamentals, highlighting their applicative aspects, up to the detailed description of several cases particularly relevant for technical and scientific research. The text is dedicated to university students in scientific fields and to all researchers who have to solve practical problems by applying data analysis and simulation procedures. The R software is adopted throughout the book, with a rich library of original programs accessible to the readers through a website.

Probability, Statistics, and Reliability for Engineers and Scientists, Second Edition

Probability, Statistics, and Reliability for Engineers and Scientists, Second Edition PDF Author: Bilal M. Ayyub
Publisher: CRC Press
ISBN: 9781584882862
Category : Mathematics
Languages : en
Pages : 660
Book Description
Virtually every engineer and scientist needs to be able to collect, analyze, interpret, and properly use vast arrays of data. This means acquiring a solid foundation in the methods of data analysis and synthesis. Understanding the theoretical aspects is important, but learning to properly apply the theory to real-world problems is essential. The second edition of this bestselling text introduces probability, statistics, reliability, and risk methods with an ideal balance of theory and applications. Clearly written and firmly focused on the practical use of these methods, it places increased emphasis on simulation, particularly as a modeling tool, applying it progressively with projects that continue in each chapter. It also features expanded discussions of the analysis of variance including single- and two-factor analyses and a thorough treatment of Monte Carlo simulation. The authors clearly establish the limitations, advantages, and disadvantages of each method, but also show that data analysis is a continuum rather than the isolated application of different methods. Probability, Statistics, and Reliability for Engineers and Scientists, Second Edition, was designed as both a reference and as a textbook, and it serves each purpose well. Ultimately, readers will find its content of great value in problem solving and decision making, particularly in practical applications.

Probability, Statistics, and Data

Probability, Statistics, and Data PDF Author: Darrin Speegle
Publisher: CRC Press
ISBN: 1000504514
Category : Business & Economics
Languages : en
Pages : 644
Book Description
This book is a fresh approach to a calculus based, first course in probability and statistics, using R throughout to give a central role to data and simulation. The book introduces probability with Monte Carlo simulation as an essential tool. Simulation makes challenging probability questions quickly accessible and easily understandable. Mathematical approaches are included, using calculus when appropriate, but are always connected to experimental computations. Using R and simulation gives a nuanced understanding of statistical inference. The impact of departure from assumptions in statistical tests is emphasized, quantified using simulations, and demonstrated with real data. The book compares parametric and non-parametric methods through simulation, allowing for a thorough investigation of testing error and power. The text builds R skills from the outset, allowing modern methods of resampling and cross validation to be introduced along with traditional statistical techniques. Fifty-two data sets are included in the complementary R package fosdata. Most of these data sets are from recently published papers, so that you are working with current, real data, which is often large and messy. Two central chapters use powerful tidyverse tools (dplyr, ggplot2, tidyr, stringr) to wrangle data and produce meaningful visualizations. Preliminary versions of the book have been used for five semesters at Saint Louis University, and the majority of the more than 400 exercises have been classroom tested.

Probability, Statistics, and Data

Probability, Statistics, and Data PDF Author: Darrin Speegle
Publisher: CRC Press
ISBN: 1000504166
Category : Business & Economics
Languages : en
Pages : 512
Book Description
This book is a fresh approach to a calculus based, first course in probability and statistics, using R throughout to give a central role to data and simulation. The book introduces probability with Monte Carlo simulation as an essential tool. Simulation makes challenging probability questions quickly accessible and easily understandable. Mathematical approaches are included, using calculus when appropriate, but are always connected to experimental computations. Using R and simulation gives a nuanced understanding of statistical inference. The impact of departure from assumptions in statistical tests is emphasized, quantified using simulations, and demonstrated with real data. The book compares parametric and non-parametric methods through simulation, allowing for a thorough investigation of testing error and power. The text builds R skills from the outset, allowing modern methods of resampling and cross validation to be introduced along with traditional statistical techniques. Fifty-two data sets are included in the complementary R package fosdata. Most of these data sets are from recently published papers, so that you are working with current, real data, which is often large and messy. Two central chapters use powerful tidyverse tools (dplyr, ggplot2, tidyr, stringr) to wrangle data and produce meaningful visualizations. Preliminary versions of the book have been used for five semesters at Saint Louis University, and the majority of the more than 400 exercises have been classroom tested.

Introduction to Probability Simulation and Gibbs Sampling with R

Introduction to Probability Simulation and Gibbs Sampling with R PDF Author: Eric A. Suess
Publisher: Springer Science & Business Media
ISBN: 038740273X
Category : Mathematics
Languages : en
Pages : 317
Book Description
The first seven chapters use R for probability simulation and computation, including random number generation, numerical and Monte Carlo integration, and finding limiting distributions of Markov Chains with both discrete and continuous states. Applications include coverage probabilities of binomial confidence intervals, estimation of disease prevalence from screening tests, parallel redundancy for improved reliability of systems, and various kinds of genetic modeling. These initial chapters can be used for a non-Bayesian course in the simulation of applied probability models and Markov Chains. Chapters 8 through 10 give a brief introduction to Bayesian estimation and illustrate the use of Gibbs samplers to find posterior distributions and interval estimates, including some examples in which traditional methods do not give satisfactory results. WinBUGS software is introduced with a detailed explanation of its interface and examples of its use for Gibbs sampling for Bayesian estimation. No previous experience using R is required. An appendix introduces R, and complete R code is included for almost all computational examples and problems (along with comments and explanations). Noteworthy features of the book are its intuitive approach, presenting ideas with examples from biostatistics, reliability, and other fields; its large number of figures; and its extraordinarily large number of problems (about a third of the pages), ranging from simple drill to presentation of additional topics. Hints and answers are provided for many of the problems. These features make the book ideal for students of statistics at the senior undergraduate and at the beginning graduate levels.

Probability, Statistics, and Stochastic Processes

Probability, Statistics, and Stochastic Processes PDF Author: Peter Olofsson
Publisher: John Wiley & Sons
ISBN: 0470889748
Category : Mathematics
Languages : en
Pages : 573
Book Description
Praise for the First Edition ". . . an excellent textbook . . . well organized and neatly written." —Mathematical Reviews ". . . amazingly interesting . . ." —Technometrics Thoroughly updated to showcase the interrelationships between probability, statistics, and stochastic processes, Probability, Statistics, and Stochastic Processes, Second Edition prepares readers to collect, analyze, and characterize data in their chosen fields. Beginning with three chapters that develop probability theory and introduce the axioms of probability, random variables, and joint distributions, the book goes on to present limit theorems and simulation. The authors combine a rigorous, calculus-based development of theory with an intuitive approach that appeals to readers' sense of reason and logic. Including more than 400 examples that help illustrate concepts and theory, the Second Edition features new material on statistical inference and a wealth of newly added topics, including: Consistency of point estimators Large sample theory Bootstrap simulation Multiple hypothesis testing Fisher's exact test and Kolmogorov-Smirnov test Martingales, renewal processes, and Brownian motion One-way analysis of variance and the general linear model Extensively class-tested to ensure an accessible presentation, Probability, Statistics, and Stochastic Processes, Second Edition is an excellent book for courses on probability and statistics at the upper-undergraduate level. The book is also an ideal resource for scientists and engineers in the fields of statistics, mathematics, industrial management, and engineering.

Probability, Statistics, and Reliability for Engineers and Scientists

Probability, Statistics, and Reliability for Engineers and Scientists PDF Author: Bilal M. Ayyub
Publisher: CRC Press
ISBN: 1439895333
Category : Business & Economics
Languages : en
Pages : 663
Book Description
In a technological society, virtually every engineer and scientist needs to be able to collect, analyze, interpret, and properly use vast arrays of data. This means acquiring a solid foundation in the methods of data analysis and synthesis. Understanding the theoretical aspects is important, but learning to properly apply the theory to real-world p

Probability, Statistics, and Reliability for Engineers and Scientists, Third Edition

Probability, Statistics, and Reliability for Engineers and Scientists, Third Edition PDF Author: Bilal M. Ayyub
Publisher: CRC Press
ISBN: 1439809526
Category : Business & Economics
Languages : en
Pages : 671
Book Description
In a technological society, virtually every engineer and scientist needs to be able to collect, analyze, interpret, and properly use vast arrays of data. This means acquiring a solid foundation in the methods of data analysis and synthesis. Understanding the theoretical aspects is important, but learning to properly apply the theory to real-world problems is essential. Probability, Statistics, and Reliability for Engineers and Scientists, Third Edition introduces the fundamentals of probability, statistics, reliability, and risk methods to engineers and scientists for the purposes of data and uncertainty analysis and modeling in support of decision making. The third edition of this bestselling text presents probability, statistics, reliability, and risk methods with an ideal balance of theory and applications. Clearly written and firmly focused on the practical use of these methods, it places increased emphasis on simulation, particularly as a modeling tool, applying it progressively with projects that continue in each chapter. This provides a measure of continuity and shows the broad use of simulation as a computational tool to inform decision making processes. This edition also features expanded discussions of the analysis of variance, including single- and two-factor analyses, and a thorough treatment of Monte Carlo simulation. The authors not only clearly establish the limitations, advantages, and disadvantages of each method, but also show that data analysis is a continuum rather than the isolated application of different methods. Like its predecessors, this book continues to serve its purpose well as both a textbook and a reference. Ultimately, readers will find the content of great value in problem solving and decision making, particularly in practical applications.

Introduction to Probability and Statistics for Ecosystem Managers

Introduction to Probability and Statistics for Ecosystem Managers PDF Author: Timothy C. Haas
Publisher: John Wiley & Sons
ISBN: 1118636236
Category : Mathematics
Languages : en
Pages : 312
Book Description
Explores computer-intensive probability and statistics for ecosystem management decision making Simulation is an accessible way to explain probability and stochastic model behavior to beginners. This book introduces probability and statistics to future and practicing ecosystem managers by providing a comprehensive treatment of these two areas. The author presents a self-contained introduction for individuals involved in monitoring, assessing, and managing ecosystems and features intuitive, simulation-based explanations of probabilistic and statistical concepts. Mathematical programming details are provided for estimating ecosystem model parameters with Minimum Distance, a robust and computer-intensive method. The majority of examples illustrate how probability and statistics can be applied to ecosystem management challenges. There are over 50 exercises – making this book suitable for a lecture course in a natural resource and/or wildlife management department, or as the main text in a program of self-study. Key features: Reviews different approaches to wildlife and ecosystem management and inference. Uses simulation as an accessible way to explain probability and stochastic model behavior to beginners. Covers material from basic probability through to hierarchical Bayesian models and spatial/ spatio-temporal statistical inference. Provides detailed instructions for using R, along with complete R programs to recreate the output of the many examples presented. Provides an introduction to Geographic Information Systems (GIS) along with examples from Quantum GIS, a free GIS software package. A companion website featuring all R code and data used throughout the book. Solutions to all exercises are presented along with an online intelligent tutoring system that supports readers who are using the book for self-study.

Probability Modeling and Computer Simulation

Probability Modeling and Computer Simulation PDF Author: Norman S. Matloff
Publisher: Pws Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 378
Book Description